

Kilonova Lightcurves & Fitting Formula

Divyansh Tripathi ¹ Dr. Ritam Mallick ¹ Anshuman Verma ¹

COAST

¹Indian Institute of Science Education and Research, Bhopal

History

- On 17th August 2017, LIGO detected a GW signal from the NS-NS merger 40 Mpc away.
- The discovery of EM counterpart AT2017gfo followed the event.

Figure 1. GW170817 Signal (Credit: Abbott 2017)

Questions we set to Answer

- Modelling of the observed Kilonova lightcurve using r-process.
- Understanding of the BNS merger .
- Expression for ejecta-mass and velocity given the masses of merging NS.

Figure 2. Observed Lightcurve of Kilonova AT2017gfo (Credit: Arcavi 2018)

Conclusion

- Given a fitting relation of ejecta mass and velocity for equal mass BNS merger.
- Obtain lightcurves of BNS merger with different remnants

General Kilonova Structure

- Dynamical Ejecta: Ejecta Components that arise in ms timescale mostly from polar regions with velocities $\geq 0.4c$.
- Disk Wind Ejeta: These arise from the equatorial region and mainly come from the accretion disk and velocities $\leq 0.2c$.

Figure 3. Schematic Diagram of Kilonovae Event

Kilonova Model

- Most of the energy of Kilonova is derived from the radioactive decay of neutron-rich elements.
- The energy is lost in the form of light we receive and in expansion
- Radioactive particles transfer energy by collisional excitation

Figure 4. Input and Output of Code

Main Governing Equations

$$\frac{1}{dt} = -\frac{1}{t} + Q_i(t) - L_{rad,i}(t)$$

$$\dot{q}_i(t) = \sum_i \int_{t_{0,i}}^t dt' c \beta K_{st}(E_i; t', t) \rho_m(t) \frac{N_i(t')}{t}$$

$$L_{rad,i}(t) = \frac{f_{esc,i}E_i}{t}$$

References

- [1] Kenta Hotokezaka and Ehud Nakar. Radioactive heating rate of r-process elements and macronova light curve. *The Astrophysical Journal*, 891(2):152, March 2020.
- [2] Ehud Nakar. The electromagnetic counterparts of compact binary mergers. *Physics Reports*, 886:1–84, 2020. The electromagnetic counterparts of compact binary mergers.
- [3] Brian D. Metzger. Kilonovae. Living Reviews in Relativity, 23(1), December 2019.

Results

Fitting Formula

$$\frac{M_{ej}}{M_{\odot}} = a * \left(\frac{M_1}{C_1}\right)^3 + b * \left(\frac{M_1}{C_1}\right)^2 + c * sin\left(\frac{M_1}{C_1}\right)$$

$$\left(\frac{v_{ej}}{c}\right) = a * C_1^3 + b * sin^2(C_1) + c * C_1$$

	а	b	С
M_{ej}	0.003	-0.038	-0.8977
v_{ej}	27788.340	-5680.583	289.371

Table 1. Fitting Values

Figure 5. Ejecta Mass Fitting

Figure 6. Ejecta Velocity Fitting

Figure 7. Lightcurve for Different BNS Remenants

Future Directions

- Improve the fitting results to include unequal mass merger and cases of Kilonovae from NS-BH merger.
- Do a full GRMHD study of the merger phenomenon.
- Probe BNS merger as a central engine of GRBs